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diagonalization of K(x, y; «) and (b) iteration of the propa-
gator composition rule to obtain the finite time GreenAn expansion on a finite set of interpolating functions is used

within the framework of Green function deterministic numerical function and to calculate the ground state energy and wave
methods. Applications to some problems with one-dimensional, function. These operations can be performed both by ‘‘de-
central, and tensor potentials are described. The precision of the terministic’’ and Monte Carlo methods. The latter have
numerical results is strongly improved. Q 1997 Academic Press

the important feature of facing problems with arbitrary
dimensionality (see, for instance, [14]). However, a funda-
mental limit is the need for high statistics, and then largeINTRODUCTION
CPU time, to reduce statistical errors. On the other hand
deterministic methods can be very accurate and relativelyIn the past two decades a great deal of effort has been
fast. Here we face deterministic techniques only and wedevoted to solving the Schrödinger equation numerically.
refer to the methods of type (a) and (b) as ‘‘Green functionThe need for a numerical approach can arise in many fields,
deterministic numerical diagonalization’’ (GFDND) andfrom nuclear to molecular physics. The currently available
‘‘Green function deterministic numerical multiplication’’numerical methods for solving the Schrödinger equation
(GFDNM), respectively.fall into two main categories: those based on the Hamil-

The main goal of this paper is to describe the applicationtonian approach and those related to the evolution opera-
of the finite interpolation method, i.e., the expansion oftor. In both cases either direct diagonalization or iterative
the wave function and the propagator on a finite set ofmultiplication techniques can be used. In this paper we
basis functions, in the framework of the GFDND and thedeal with methods belonging to the second category. They
GFDNM. We test such a method on some problems withhave been proven to have very good stability and conver-
one-dimensional, central, and tensor potentials.gence in the computation of bound states of a quantum

The paper consists of five sections plus an Appendix. Insystem and high accuracy in delicate tunneling problems
the first section we discuss some properties of the shortand in the calculation of excited levels [1–8]. Moreover,
time propagator. In the second section we describe themuch work has been devoted to the solution of the time-
numerical methods employed. The third section is devoteddependent Schrödinger equation, namely the problem of
to the study of the propagator in the two-body problempropagating a wave packet [9–13]. Here we consider only
for both central and tensor potentials. In the fourth we

the bound states and we use the Euclidean propagators
present some numerical results and we make a comparison

(imaginary time formulation). This allows us to work with with the results of a different technique based on the Ham-
Gaussian, rather than oscillatory, functions and it gives a iltonian and on a discrete variable representation method.
significative gain in stability and accuracy. However, the The fifth section is the conclusion. In the Appendix we
main idea could also be applied to the general case. give a more formal and general treatment of the finite

The method of solving the Schrödinger equation numeri- interpolation method.
cally starting from the evolution operator of the quantum
system has its origin in the Feynman formulation of quan- I. SHORT TIME PROPAGATOR
tum mechanics. The fundamental ingredient of such a for-
mulation is the short time propagator K(x, y; «), defined The fundamental quantity in the Feynman formulation
for an infinitesimal time interval «. The propagator K(x, of quantum mechanics is the short time propagator K(x,
y; «) represents the kernel of the Schrödinger equation y; «). This propagator determines the evolution of the
and contains all the information about the quantum system. quantum system in a small time interval «, by relating the

wave function c(x; t0 1 «) to the wave function at time t0Two possibilities for extracting such information are: (a)
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This is basically the discretized form of the Feynman inte-c(x; t0 1 «) 5 E K(x, y; «)c(y; t0) dy. (1)
gral. From K(x, y; T) we can obtain the ground state energy
by using the Feynman–Kac formula (see, for example, [18])

The short time propagator satisfies the semigroup composi-
tion rule

E0 5 2lim
TRy

log
Z(T)

T
, (6)

K(x, y; 2«) 5 E dz K(x, z; «)K(z, y; «). (2)
where

In the following we consider Euclidean propagators and
Z(T) 5 E dx K(x, x; T). (7)« is an imaginary time. For the sake of simplicity, we deal

with only one-dimensional or radial propagators; the ex-
tension of the present analysis to several dimensions is Moreover, the probability density uc0(x)u2 is given by
straightforward.

The Euclidean short time propagator is given by (we
uc0(x)u2 5 2lim

TRy

K(x, x; T)
Z(T)

. (8)use units " 5 m 5 1)

A disadvantage of this approach is that it yields directly
K(x, y; «) 5

1

Ï2f«
exp H2

1
2«

(x 2 y)2 2 f(x, y; «)J , (3) only the ground state properties. On the other side it can
be sometimes useful to have the finite time propagator
(for example, when studying a statistical system it may be ofwhere the first term in the exponential corresponds to the
interest to obtain the density matrix at finite temperature).kinetic part of the Hamiltonian, and the function f(x, y;

By solving the integrals in Eqs. (4) and (2) numerically,
«) is the potential term. Its explicit expression depends on

we get the energy levels and the bound state wave functionsthe prescription chosen: for example, the last point rule
of the quantum system. We will refer to the deterministic

f(x, y; «) 5 «V(x) gives a short time propagator correct
numerical methods based on the first approach describedup to O(«) only, while the symmetric expression «[V(x) 1
in this section as GFDND and to those based on the second

V(y)]/2 is correct up to O(«2) (see, for instance, [15]). A
one as GFDNM. In both cases we obtain the same resultssystematic expansion of the short time propagator in « is
for the ground state.also possible [8, 16, 17].

We describe here two methods for obtaining the energy
II. NUMERICAL METHODSlevels and the bound state wave functions of a quantum

system. A. Integration Rules
The first method is based on Eq. (1): if En and cn(x) are

In this subsection we give a brief sketch of an integrationrespectively the eigenvalues and eigenvectors of the Hamil-
rule method used for solving Eqs. (4) and (5) numerically.tonian,
More detailed discussions have already been published
[1, 2, 5–8].E K(x, y; «)cn(y) dy 5 e2«Encn(x). (4) Equations (4) and (2) can be approximated by numerical
integration rules, yielding, respectively,

This is simply an eigenvalue integral equation. Its solution
yields directly the energy levels and the wave functions of ON

j51
wjK

«
ijc(xj) Q e2E«c(xi), (9)the Hamiltonian.

An alternative method relies on the path integral calcula-
tion of the finite time propagator K(x, y; T) in the T R and
y limit. Let us consider the semigroup composition law
(2). By iterating this rule we can get the finite time Green

K 2«
ij Q ON

h51
whK «

ihK «
hj , (10)function starting from the short time propagator

K(x, y; T 5 (M 1 1)«) where K «
ij ; K(xi , xj ; «), and wh are the weights associated

with the integration rule.
5 E ? ? ? Ep

M

i51

dxi K(x, xM ; «) (5) Unfortunately, there are some problems. The first diffi-
culty is in the choice of the numerical integration rule.
Since the interval of integration in Eqs. (4) and (2) goesK(xM , xM21 ; «) ? ? ? K(x1 , y; «).
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from 2y to 1y, we should use a quadrature rule for
cn(x) Q ON

i51
c n

i li(x), (12)improper integrals (for instance, Gaussian quadrature).
But there is a constraint: since the integrand is mainly a
narrow Gaussian of width Ï« whose central position, xi , where now the coefficients c n

i are just the values of the
moves on the entire interval, we need a grid dense enough function cn(x) in the interpolating points xi . The substitu-
to yield an accurate quadrature everywhere. Then we are tion of cn(x) in Eq. (4) yields
forced to take a uniform distribution of grid points with a
distance Dxi 5 xi 2 xi21 p Ï«. Therefore a finite number
of points requires a finite range of integration, L, which E K(x, y; «) ON

i51
c n

i li(y) dy Q e2«Encn(x). (13)
corresponds to confining the system in a ‘‘box’’ of length
L. However, if the interval is large enough, this gives negli-
gible corrections to the energies and to the wave functions Since the functions wi(x) are given, we can calculate the in-
of the bound states. tegrals

In conclusion, by diagonalizing the matrix wjK «
ij we can

obtain the energies and the wave functions of the quantum
K̃i(x; «) 5 E K(x, y; «)li(y) dy, (14)system directly. Instead, by iterating Eq. (10) and using the

Feynman–Kac formula we obtain the finite time Euclidean
Green function and evaluate the ground state energy and and Eq. (13) becomes
wave function. In practice the convergence is attained in
a few iterations. ON

i51
c n

i K̃i(x; «) Q e2«Encn(x). (15)
B. Finite Interpolation

Actually, in the previous method there are two prob- We can find the coefficients c n
i by selecting N distinct

lems: the dependence between « and Dx and the finite points xi and by solving the following system of N 3 N
range of integration, L. Obviously they are related: if we linear equations (collocation method)
fix the number of grid points and the interval L, then the
value of « is fixed by the relation « p Dx2 (in practice, a
ratio «/Dx2 5 1 gives an accuracy greater than 1% and ON

j51
c n

j K̃ «
ij 5 e2«Enc n

i , (16)
already with 1.25 we get at least eight digits). In other
words, if we take « tending to zero the kinetic energy part
of the propagator becomes strongly peaked and we need where
a very large number of points to obtain a good precision.
This means that we cannot take « as small as possible and K̃ «

ij ; K̃j(xi ; «). (17)
the systematic error which depends on « can be quite large
(this systematic error should not be confused with the

Then we have the usual eigenvalue problem, like in Eq. (9).numerical error in the quadrature, which depends only on
Now we apply the finite interpolation technique to thethe ratio «/Dx2).

case of the GFDNM. Let us start from the equationThese problems can be overcome by using an alternative
method. In the following we give a heuristic and simplified
description of this technique. A more formal and general E K(x, y; 2«)c(y) dy

(18)treatment will be given in the Appendix.
The method is based on the expansion of the unknown 5 EE K(x, z; «)K(z, y; «)c(y) dz dy .

wave function cn(x) on some basis of interpolating func-
tions wi(x) [19]

By substituting the expansion (12) and integrating, we
obtain

cn(x) Q ON
i51

an
i wi(x). (11)

ON
j51

K̃j(x; 2«)cj 5 EON
j51

K(x, z; «)K̃j(z; «)cj dz. (19)
Since cn(x) is usually smooth we can attain good accuracy
with quite small N. This technique can be used within
both the GFDND and the GFDNM. Let us start from The function K̃j(z; «) is a convolution of a narrow Gaussian

with a smooth function, and it is also smooth; thereforethe GFDND and take the interpolating functions to be
Lagrange polynomials. Then Eq. (11) becomes we can expand it as
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computation is usually quite fast and accurate). Second,
K̃j(z; «) Q ON

h51
K̃ «

hjlh(z). (20) and most important, if the mass does not depend on the
position the matrix of the propagator in the multidimen-
sional case can be factorized as a tensorial product of one-By integrating again we have
dimensional free propagator matrices multiplied by the
diagonal matrix corresponding to the potential term. This
means that if we solve the eigenvalue problem by iterativeON

j51
K̃ 2«

ij cj ON
j51

ON
h51

K̃ «
ihK̃ «

hjcj , (21)
techniques (for instance, the Lanczos method [20]) we need
much less effort in terms of both computation and memory

and by comparing the coefficients we obtain the composi- requirements. Then it becomes possible to deal with three-
tion rule or four-dimensional problems.

III. CENTRAL AND TENSOR POTENTIALSK̃ 2«
ij 5 ON

h51
K̃ «

ihK̃ «
hj . (22)

The previous discussion is limited to one-dimensional
systems. We now consider three-dimensional systems withThis rule is formally equal to that of Eq. (10), and we can
central and tensor potentials. These can be reduced, by aproceed as before. By iterating Eq. (22) we get the finite
separation of the angular variables, to one-dimensionaltime matrix K̃ T

ij . Moreover, as shown in the Appendix,
problems; but a fundamental difference arises in the ex-we have
pression of short time propagators. This difference is illus-
trated in the next section.

E K(x, x; T) dx Q ON
i51

K̃ T
ii . (23)

A. Central Potentials

Let us consider a three-dimensional problem with a cen-Therefore we can obtain the ground state energy by the
tral potential. In this case we can separate the angular andFeynman–Kac formula, and the matrix elements K̃ T

ij con-
the radial variables and the propagator factorizes in thetain information about the ground state wave function (see
following way [21],Eq. (A26) in the Appendix).

The main point of these new methods is that the integrals
K(r, t; r0 , t0)

(24)
in Eq. (14) can be calculated with any accuracy by analytic
or numerical methods. As a consequence the value of « is
not related to the choice of the points xi anymore. There- 5 Oy

l50
Ol

m52l

1
rr0

gl(r, t; r0 , t0)Ylm(u, f)Y*lm(u0 , f0),
fore we have three important results.

First of all we can now take the time step, «, very small
where Ylm(u, f) are the spherical harmonics. The contribu-and the systematic error depending on it can be reduced.
tion of states with angular momentum l isAs a second result we can choose an appropriate distri-

bution of grid points according to the shape of the wave
functions and we can obtain a better accuracy with the Kl(r, t; r0 , t0)
same number of points. This is equivalent to saying that

5 kruP̂le2Ĥ(t2t0)P̂lur0l (25)we can choose an appropriate transformation of variables
which maps the original interval of integration into a new

5 Ol

m52l

1
rr0

gl(r, t; r0 , t0)Ylm(u, f)Y*lm(u0 , f0).one and then discretize the new variable. In particular, we
can map the infinite interval into a finite one. So we have
the advantage of taking correctly into account the bound-

Obviously, since the system has spherical symmetry, theary conditions simply by requiring that the wave functions
contributions corresponding to different values of l arevanish in the extremes of the interval.
separated. If we consider the radial wave function Rnl(r),The third result concerns the choice of the prescription
it satisfies the integral equationfor the potential part of the propagator, i.e., the function

f (x, y; «). Since the value of « can now be taken very small
we can choose any rule. In particular, if we adopt the last- E gl(r, «; r9, 0)Rnl(r9) dr9 5 e2«EnlRnl(r). (26)
point rule, f (x, y; «) 5 «V(x), the potential term can be
put out of the integral. This has two consequences: first, the
integrals in Eq. (14) could be often worked out analytically Moreover the radial propagators gl(r, t; r0 , t0) obey the

usual composition law(although this can be inconvenient, since the numerical
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of Ĥ in terms of eigenvectors of the orbital angular momen-gl(r, t; r0 , t0) 5 E dr9 gl(r, t; r9, t9)gl(r9, t9; r0 , t0), (27)
tum, the propagator (31) can be written as

and they are given by kr, S, suP̂J P̂W e2Ĥ(t2t0)P̂J P̂Wur0 , S, s0l

5
1

rr0
hg00(r, t; r0 , t0)ds0d0s0

Y00(u, f)Y*00(u0, f0)gl(u) 5 kl(u) exph2f (u)j, (28)
1 g02(r, t; r0 , t0)ds0C10

22s01s0
Y00(u, f)Y*22s0

(u0 , f0)
where u ; (r, «; r0 , 0); f (u) depends, as usual, on the

1 g20(r, t; r0 , t0)C10
22s1sd0s0

Y22s(u, f)Y*00(u0 , f0)prescription chosen for the potential and
1 g22(r, t; r0 , t0)C10

22s1sC 10
22s01s0

Y22s(u, f)Y*22s0
(u0 , f0)j

(33)kl(u) 5
1

Ï2f«
!2f

rr0

«
«2rr0/«Il11/2 Srr0

«
D e2(r2r0)2/2«, (29)

where CJM
LmSs are the Clebsch–Gordan coefficients and the

gab are functions of the radial coordinates only. Thereforewhere Il11/2(z) are the modified Bessel functions. As in the
the tensor potential couples the two channels l 5 0 andone-dimensional case this short time propagator can be
l 5 2. If we write now the deuteron wave function in termsused to obtain the finite time propagator, the binding ener-
of the S and D state radial wave functions ub(r) and wb(r),gies, and the wave functions of the system.
we get

B. Tensor Potential (Deuteron)
kr, 1, s ub, 1, 0, 1, 1l 5

ub(r)
r

d0s Y00(u, f)

(34)
A more sophisticated system is the deuteron, with the

two nucleons interacting through a realistic potential,
which also has a tensor part that does not commute with 1

wb(r)
r

C 10
22s1sY22s(u, f).

the orbital angular momentum. The Hamiltonian can be
written in the following way,

It is convenient to define the matrix

Ĥ 5 2
1

2r2

­

­r Sr2 ­

­rD1
l̂ 2

2r2
(30) G(u) 5 Sg00 g02

g20 g22D, (35)

1 VC(r) 1 ÔL,SVL,S(r) 1 VT(r)Ŝ12(u, f),
and the two-component vector (ub, wb); then

where ÔL,S represents the spin and the orbital angular
momentum operators, and Ŝ12 is the tensor operator. The E G(r, «; r9, 0) Sub(r9)

wb(r9)
D dr9 5 e2«Eb Sub(r)

wb(r)
D. (36)

partial Euclidean propagator of the deuteron is

Moreover the matrix G satisfies the usual composition lawKJW (r, s, t; r0 , s0 , t0) 5 kr, S, s u P̂J P̂W e2Ĥ(t2t0)P̂J P̂W ur0 , S, s0l,
(31)

G(r, t; r0, t0) 5 E dr9 G(r, t; r9, t9)G(r9, t9; r0, t0), (37)
where P̂J is the projector on states with total angular mo-

where GG is now a matrix product. By substituting thementum J, and P̂W the projector on states with parity W.
expression (34) into Eq. (32), and comparing with Eq. (33),By inserting into this expression a complete set of eigenvec-
we obtain the relationstors of the Hamiltonian (30), ub, J, Jz , S, W l, we get

g00(r, T; r0, 0) 5 O
b

ub(r)u*b (r0)e2EbT, (38a)KJW(r, s, t; r0, s0, t0)

5 O
b,Jz

kr, S, s ub, J, Jz, S, W l kb, J, Jz, S, W ur0, S, s0le2Eb(t2t0).
g02(r, T; r0, 0) 5 O

b

ub(r)w*b (r0)e2EbT, (38b)
(32)

g20(r, T; r0, 0) 5 O
b

wb(r)u*b (r0)e2EbT, (38c)
The ground state of deuteron has J 5 1, W 5 1, and S 5
1. Furthermore, since the ground state level displays a

g22(r, T; r0, 0) 5 O
b

wb(r)w*b (r0)e2EbT (38d)threefold degeneracy, corresponding to the different val-
ues of Jz , it is sufficient to take into account only the
contribution with Jz 5 0. By expanding the eigenvectors involving the S and D components of the wave function.
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Hence the radial propagator G(r, t; r0 , t0) satisfies rela- Furthermore
tions which are equivalent to those of the one-dimensional
case. Therefore we can recover the energy and wave func- kr, 1, s u Ŝ12upl 1 1 0l
tion of the ground state either by using a generalization

5!2
f
E dr9 pr9 jl (pr9)kr, 1, s uŜ12ur9 l 1 1 0l,of the Feynman–Kac formula

(46)
E0 5 2lim

TRy
log

Z(T)
T

, (39)
and

with
Ŝ12 ur011M l 5 Ï8 ur211M l, (47a)

Ŝ12 ur211M l 5 Ï8 ur011M l 2 2 ur211M l. (47b)Z(T) 5 E dr[g00(r, T; r, 0) 1 g22(r, T; r, 0)], (40)

By substituting into Eq. (43), and comparing with Eq. (33),and
we obtain

uu0(r)u2 5 2lim
TRy

g00(r, T; r, 0)
Z(T)

, (41a) g00(u) 5 k0(u) e2fC(u)A(a), (48a)

g02(u) 5
Ï8
2

[k0(u) 1 k2(u)]e2fC(u)2(1/2)fLS(u)B(a), (48b)uw0(r)u2 5 2lim
TRy

g22(r, T; r, 0)
Z(T)

, (41b)

g20(u) 5
Ï8
2

[k0(u) 1 k2(u)]e2fC(u)2(1/2)fLS(u)B(a), (48c)or by diagonalizing directly the matrix in Eq. (35).
All we need in both cases is to evaluate the short time

g22(u) 5 k2(u)e2fC(u)2fLS(u)hA(a) 2 2B(a)j, (48d)radial propagators gab(r, «; r0 , 0). Let us start by writing
the projector P̂J P̂W as

where a 5 2fT (u).
P̂J P̂W 5 E dp O

S,Jz

O
leven

upl S J Jzl kpl S J Jzu, (42)
IV. RESULTS

In this section we discuss the results obtained by thewhere p is the magnitude of the momentum vector.
finite interpolation method for some specific one-dimen-By inserting this expression into Eq. (31), setting J 5 1,
sional, central, and tensor potentials. However, before fo-W 5 1, S 5 1, and taking the contribution of Jz 5 0 only,
cusing on concrete examples, we need to make some fur-we obtain
ther remarks.

First of all we must choose a set of approximating func-KJW(r, s, «; r0 , s0 , 0)
tions. In the following we use piecewise polynomials of

5 E dp O
l50,2

kr, 1, s upl 1 1 0le2(1/2)p2
«kpl 1 1 0ue2V̂«ur0 , S, s0l. order n even. More precisely, since high-order Lagrange

polynomials may lead to unwanted oscillations, we take
(43) only the piece between the two central interpolation points.

Then we repeat the process over all inner points, while
Since the tensor operator Ŝ12 is a function of the angular the initial and final points are interpolated by the left and
variables, now the separation of the angular and the radial right side of the Lagrange polynomials, respectively. In
coordinates is not as straightforward as in the case of the this way we obtain a quasi-smooth interpolation. We have
radial potential. This difficulty can be overcome by using tested the convergence of the results by increasing n and we
the fact that the exponential of the tensor potential can found a good stability. Clearly other choices (for instance,
be written as splines) can be valid as well.

The second step is the choice of a transformation of
eaŜ12 5 A(a) 1 B(a)Ŝ12, (44) variables which maps the infinite interval into a finite one.

We choose a transformation suggested in Ref. [22], which
where has been proven to work very well. Such a transformation

maps the interval [0, y) onto [0, 1) and it is given by
A(a) 5 Ad(2e2a 1 e24a), (45a)

B(a) 5 Ah(e2a 2 e24a). (45b) r 5 1 2 e2lr, (49)
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TABLE I more appropriate value for each wave function, the preci-
sion of our results can be even better. In Fig. 1 we compareParameters of the Morse Curve
the computed and analytic eigenfunctions obtained with

D 5 0.1744 (a.u.) 129 grid points corresponding to quantum numbers n 5 0,
b 5 1.02764 (a.u.) 5, and 15. The dots represent the numerical values, while
xe 5 1.40201 (a.u.) the solid lines are the analytic solutions. The wave func-
m 5 918.491 (a.u.)

tions are superimposed on the Morse potential with the
zero of the wave functions placed at the bound state energ-
ies. Both the numerical and the analytic wave functions
have been normalized. The differences between them are

where r is the original variable and r the new one. The nowhere discernible to the resolution of the plots (see also
parameter l can be varied to optimize the accuracy of the Ref. [23]).
numerical solution. We notice that an arbitrary parameter Let us now discuss in detail the convergence and the
is introduced also in other approaches, as some kind of stability of the method. In order to obtain such high accu-
cutoff or interval length. It will be shown in what follows racy we use polynomials of order 20. The results do not
that the results are stable for a large range of values of l change significantly by using higher degrees.
(see also Ref. [22]). The value of l must not be too large, The stability in l is shown in Figs. 2 and 3 for 65 and
in order not to lose accuracy in the interpolation of the 129 grid points, respectively. The numerical values of four
tail of the wave function. On the other hand it must not different energy levels are plotted versus the parameter l.
be too small in order to have as many grid points as possible The plots show that for higher quantum numbers, n, we
near the origin, where the wave function and the potential should use smaller values of l. This is obvious since if the
change rapidly. More precisely l must be chosen in such wave functions are less confined the distribution of grid
a way that the grid points are distributed on the entire points must be larger. The results of Table II are obtained
interval where the wave functions are significantly different with l 5 0.3 (a.u.), which is a good value for almost all
from zero. In practice, this condition can be satisfied by energy levels. As a last remark we note that by increasing
looking at the plots of the wave functions. The correctness the number of points, the stability increases as well.
of the value of l can be checked by testing the stability of Finally, in Table III we report the convergence of the
the results. numerical values with respect to the time step «. The results

Let us now analyze the numerical results obtained by previously discussed in Table II were obtained with « 5
using the finite interpolation within the GFDND and 1 3 1024, which gives enough accuracy. In fact, we can see
GFDNM. We use the prescription f(x, y; «) 5 «V(x) and in Table III that it is possible to attain even more precision.
the integrals in Eq. (14) are computed numerically. As a second example let us consider the spherically sym-

As a first example we consider the Morse potential metric Pöschl–Teller potential given by
given by

V(r) 5 V0 tanh2(r). (51)
V(x) 5 D[1 2 exp h2b(x 2 xe)j]2. (50)

The energy levels with angular momentum l 5 0 of such
a potential are known analytically. In Table IV we compareThe parameters of the Morse curve and the mass are given
our numerical results with the analytic ones. The parameterin Table I. In order to compare our results to those ob-
l has been taken in the range of stability and the time steptained by other methods, in particular the Fourier grid
« has been fixed to obtain the required accuracy. The dataHamiltonian (FGH) method [23] which is a special case
show that good precision is attained with a relatively smallof a discrete variable representation (DVR) method [24],
number of grid points.we use the same parameters as those in Ref. [23].

As a further example let us consider another potentialThe Morse potential is one-dimensional and we use the
with analytic solutions:propagator given in Eq. (3), but we can still adopt the

transformation given in Eq. (49). In fact, due to the hard
core of the Morse potential, the wave functions are differ- V(r) 5

A
r2 2

1
r

(52)
ent from zero only on the positive semi-axis.

In Table II we show the results of our method compared
to those in Ref. [23] and to the analytic values. We can (Krazer potential). In Table V we report the results for

the ground state energy of such a potential with differentsee that the results of the GFDND are better than those
of the FGH method up to the last two energy levels. More- values of the parameter A. The agreement between the

numerical and analytic calculations is excellent, even forover we must point out that we have used the same value
of the parameter l to obtain all energy levels. If we use a small A (cf. the results of [6]).
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TABLE II

Comparison of the Energy Values (a.u.) for the Morse Potential Calculated by Using the GFDND, the Fourier Grid
Hamiltonian Method, and the Exact Analytic Formula

Fourier grid Hamiltonian Green function deterministic
method numerical diagonalization

n N 5 65 N 5 129 N 5 65 N 5 129 Exact

0 0.00986923 0.00986923 0.00986922 0.00986922 0.00986922
1 0.02874536 0.02874536 0.02874535 0.02874535 0.02874535
2 0.04647171 0.04647173 0.04647172 0.04647172 0.04647172
3 0.06304833 0.06304835 0.06304834 0.06304832 0.06304833
4 0.07847564 0.07847520 0.07847524 0.07847517 0.07847518
5 0.09275367 0.09275229 0.09275247 0.09275226 0.09275227
6 0.10587909 0.10587962 0.10588013 0.10587959 0.10587960
7 0.11784686 0.11785719 0.11785832 0.11785716 0.11785717
8 0.12866157 0.12868500 0.12868717 0.12868497 0.12868498
9 0.13834083 0.13836306 0.13836673 0.13836302 0.13836303

10 0.14689650 0.14689135 0.14689693 0.14689131 0.14689132
11 0.15431741 0.15426987 0.15427749 0.15426984 0.15426985
12 0.16057903 0.16049864 0.16050793 0.16049862 0.16049862
13 0.16566518 0.16557765 0.16558795 0.16557763 0.16557763
14 0.16957779 0.16950690 0.16953042 0.16950689 0.16950689
15 0.17233036 0.17228639 0.17263242 0.17228666 0.17228638
16 0.17394440 0.17391637 0.17589464 0.17397072 0.17391611

Note. The degree of the Lagrange polynomial is 20. The parameter l is 0.3 (a.u.). The time step « is 1 3 1024 (a.u.).

We note that the expression in Eq. (29) of the short i. We can reduce the systematic error due to the finite
time propagator is not correct for singular potentials [21]. time step « without increasing the number of grid points.
However, since the wave function is almost zero near the ii. We can perform any change of variables and inte-
origin, the contributions to the integral coming from such grate on the entire real axis. This means also that we can
a region are very small, and we still obtain good numerical choose an appropriate distribution of grid points according
results (see Table VI). The convergence of the numerical to the shape of the wave function so as to obtain higher
values toward the analytic ones is shown by increasing the precision with the same number of points.
number of grid points.

iii. We can find a tensorial representation of the multi-The last example is the problem of the deuteron with a
dimensional propagator which permits a reduction in therealistic nuclear potential, which includes a tensor part. In
computational and memory requirements.particular we use the Argonne V14 potential [25]. This

system is difficult to study, because the very long tail of These improvements allow us to remarkably increase
the wave function requires a large number of points in

the efficiency of Green function deterministic numericalorder to attain good precision. The finite interpolation
methods.method gives excellent results, as shown in Table VII (cf.

[6]). In Fig. 4 we show how the numerical values of the
APPENDIXenergy change by varying the parameter l with a fixed

number of points. If l is taken in the appropriate interval,
In general the problem of interpolation can be formu-according to the previous discussions, the results are stable.

lated as follows [27]:Obviously the stability increases if we take a larger number
Let X be a linear space of dimension N and let L1 ,of points (the plot in Fig. 4 has been made with only 50

L2 , ..., LN be N given linear functionals defined on X. Forpoints). However, since in the deuteron case it is important
a given set of values w1 , w2, ..., wN , can we find an elementto have many grid points in the region r , 1 fm, a transfor-
of X, say w, such thatmation more efficient than (49) could be used [26].

V. CONCLUSIONS Li [w] 5 wi , i 5 1, 2, ..., N? (A1)

In this paper we have applied the finite interpolation
This is possible if, given N independent elements w1 ,method to the GFDND and the GFDNM. We have three

main results: w2 , ..., wN of X, the following holds:
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FIG. 1. Comparison of analytic (solid line) and numerically computed (dots) eigenfunctions for the n 5 0 (a), 5 (b), and 15 (c) states of the
Morse potential (129 grid points). The wave functions are superimposed on the Morse potential.
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FIG. 2. Energy plots for the n 5 0 (a), 8 (b), 14 (c), and 16 (d) states of the Morse potential versus l (65 grid points).

uLi [wj]u ? 0. (A2) a small number of points is not enough to give a good
approximation to a rapidly changing function. In this case
it could be more useful to know the moments of the func-The solution of the interpolation problem is given to w 5

oN
i51 ai wi , where the coefficients ai are solutions of the tion with respect to some set of independent functions

w1(x), w2(x), ..., wN (x) in X, i.e.,system

Li [wj]aj 5 wi , (A3) L̃i [w] ; E w(x)wi (x) dx 5 E f(x)wi(x) dx. (A5)

(summation on equal indices has been understood). It is clear that a universal approach to approximating a
Now let us consider the following question: how can we given function does not exist; the best strategy must be

approximate a function f(x) defined on an interval I by a chosen depending on the function we want to approximate.
function w(x) [ X, where X is an N-dimensional space of The situation is even more complex in two dimensions.
functions defined on the same interval? Here the interpolation could be different for the two inde-

Usually we have certain information about a function, pendent variables.
and we must use this information to construct other func- Let g(x, y) be a given function defined on S and let
tions that will approximate it. For example, the ordinary

f(x, y) [ Y be the approximating function, where Y is an
pointwise interpolation is given by N 3 N-dimensional space of functions on S. Let, finally,

the N 3 N products of functions wi(x)wj (y) be a basis in
Li [w] ; w(xi) 5 f(xi), (A4) Y; then we can define the N 3 N functionals

where x1 , x2 , ..., xN are N distinct points lying in I. Pointwise
L̃ij [f] ; E f(xi , y)wj (y) dy 5 E g(xi , y)wj (y) dy. (A6)interpolation leads to the construction of a function w

which has the same values of the original function f in N
Obviouslypoints. This approach can appear to be the most natural

for approximating a given function, but this fact does not
mean that it is always the most appropriate. For example, L̃ij [wkwh] 5 Li [wk]L̃j [wh], (A7)
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FIG. 3. Energy plots for the n 5 0 (a), 8 (b), 14 (c), and 16 (d) states of the Morse potential versus l (129 grid points).

where Li and L̃i have been defined previously. This is w2(x), ..., wN(x) be our independent expansion functions.
useful if the function g(x, y) changes rapidly with y for Let us define
fixed x, but e g(x, y)wi(y) dy is smooth with respect to x
(as in the case of the short time propagator). Fij ; Li [wj], (A8)

Now we have all the ingredients and can prove formally
the relations (16) and (22). F̃ij ; L̃i [wj]; (A9)

Let c(x) and K(x, y; «) be the wave function and
the short time propagator, respectively, and let w1(x), then c(x) and K(x, y; «) can be approximated by

TABLE III
TABLE IV

Ground State Energy Values (n 5 0) for the Morse Potential
Energy Levels En,l with l 5 0 of the Pöschl–Teller RadialObtained with Different Time Steps «

Potential (V0 5 100)
« 3 104 (a.u.) N 5 65 N 5 129

n E nu
n,0 E th

n,0 Relative error
4 0.009869201 0.009869201
2 0.009869218 0.009869218 0 19.9763 19.9765 1 3 1025

1 43.2781 43.2784 7 3 10261 0.009869223 0.009869223
0.5 0.009869226 0.009869224 2 62.5800 62.5803 5 3 1026

3 77.8818 77.8823 6 3 10260 0.009869228 0.009869225
4 89.1838 89.1842 4 3 1026

5 96.4860 96.4862 2 3 1026Exact 0.009869224 0.009869224
6 99.7885 99.7881 4 3 1026

Note. The value « 5 0 corresponds to a quadratic extrapolation. The
last row gives the analytic result. The degree of the Lagrange polynomial Note. The number of grid points is 30. The numerical and theoretical

values of the energy are denoted by E nu
n,0 and E th

n,0, respectively.is 20. The parameter l is 0.3 (a.u.).
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TABLE V TABLE VII

Ground State Energy of the Krazer Potential Deuteron Binding Energy

No. of points E0
aA E nu

0 E th
0 Relative error

5.0 20.036484 20.036492 2 3 1024 50 22.224
100 22.2251.0 20.125716 20.125000 6 3 1023

0.5 20.191292 20.190983 2 3 1023

0.2 20.293826 20.293044 3 3 1023 Note. The parameter l is 0.2 fm21. The Lagrange polynomial degree
is 12. The numerical value of the binding energy is denoted by E0.

a EArgonne 5 22.225 MeV.Note. The number of grid points is 30. The Lagrange polynomial degree
is 10. The numerical and theoretical values of the energy are denoted
by E nu

0 and E th
0 , respectively.

By comparing the coefficients of the various wi(x), and de-
fining

c(x) Q F21
ij cj wi (x), (A10)

K «
ij ; F21

ih K̃ «
hj , (A16)

K(x, y; «) Q F21
ij F̃21

khK̃ «
jhwi(x)wk(y), (A11)

an
i ; F21

ij c n
j , (A17)

we finally havewhere

K «
ij an

j 5 e2«Enan
i . (A18)

ci ; c(xi), (A12)
Thus the eigenvalues of K «

ij are the eigenvalues of the
original equation in the approximation given by the expan-K̃ «

jh ; E K(xi, y; «)wj (y) dy. (A13)
sions (A10) and (A11). Furthermore the cn(xi) can be
obtained from the an

i by
By substituting the expansions (A10) and (A11) into Eq.

cn(xi) 5 Fij an
j . (A19)(4), we obtain

Thus we have proved Eq. (16). Now, in order to prove
Eq. (22), we consider the composition rule (2) and expressE F21

ij F̃21
kh K̃ «

jhwi(x)wk(y)F21
lmc n

mwl (y)dy 5 e2«EnF21
ij c n

j wi(x).
the propagators by their expansions

(A14)

F21
ij F̃21

kh K̃ 2«
jhwi(x)wk(y)

5 E F21
ij F̃21

kh K̃ «
jhwi(x)wk(z)F21

ab F̃21
cd K̃ «

bdwa(z)wc(y) dz.
The integral yields a factor F̃kl . Therefore, after some
simplifications, we get

(A20)

F21
ij K̃ «

jhF21
hmc n

mwi (x) 5 e2«EnF21
ij c n

j wi(x). (A15)

TABLE VI

Ground State Energy of the Krazer Potential with A 5 1

No. of points E nu
0 Relative error

30 20.125716 6 3 1023

60 20.125115 9 3 1024

120 20.125011 9 3 1025

E th
0 20.125000

Note. The Lagrange polynomial degree is 10. The numerical and theo- FIG. 4. Energy plot for the ground state of the deuteron versus l
retical values of the energy are denoted by E nu

0 and E th
0 , respectively. (50 grid points).
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By integrating and comparing the coefficients, we obtain ACKNOWLEDGMENTS
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